Иллюстрация удержания и исследования фаз высокого давления в виде включений в нанокристаллическом алмазе / © Charles Zeng / Автор: Иван Беляев
При давлениях, достигающих и превышающих сотни тысяч атмосфер, энергия сжатия становится сравнимой с энергией химических связей в веществах и материалах, а их свойства существенно изменяются. Графит превращается в алмаз, газообразный кислород становится металлом, и образуются соединения с составом, невозможным в обычных условиях.
Один из интереснейших классов таких соединений — супергидриды, которые содержат гораздо большее количество водорода, чем позволяет обычная химия. Литий и лантан при обычном давлении образуют гидриды LiH и LaH3, а при миллионах атмосфер — LiH6 и LaH10.
Многие супергидриды выступают сверхпроводниками и оставляют далеко позади даже самые высокотемпературные сверхпроводники, существующие при обычном давлении. У иттрий-бариевого купрата — наиболее многообещающего представителя последних — температура перехода составляет минус 180 градусов Цельсия. У LaH10 она достигает минус 23 градусов при полутора миллионах атмосфер, и супергидриды еще только начали изучать. Среди них вполне может отыскаться сверхпроводник, остающийся таковым при комнатной температуре, и почти наверняка он будет существовать только при высоком давлении.
Синтезировать и изучать фазы высокого давления сравнительно несложно: алмазные наковальни создают давление до нескольких миллионов атмосфер и пропускают инфракрасное и рентгеновское излучение, которыми можно изучать структуру вещества. К сожалению, почти все эти фазы распадаются при извлечении из наковальни.
Ученые под руководством доктора Чжидань Дзэн (Zhidan Zeng) из Научно-технологического центра исследований высокого давления (Center for High Pressure Science and Technology Advanced Research, HPSTAR) и профессора Венди Мао (Wendy Mao) из Стэнфордского университета (Stanford University) предложили способ сохранения фаз высокого давления вне алмазных наковален и проверили его экспериментально.
Они использовали стеклоуглерод — модификацию углерода, которая в обычных условиях непроницаема для газов и жидкостей, но начинает пропускать их под давлением. Каждый атом углерода в стеклоуглероде связан с тремя соседями, подобно графиту, но, в отличие от последнего, его структура беспорядочна на масштабах, превышающих атомные.
Если связывать плоские графитоподобные фрагменты в трехмерную беспорядочную сеть, между ними неизбежно оказывается много пустого пространства, что отражается в очень низкой плотности стеклоуглерода (1,5 грамма на сантиметр кубический против 2,5 у графита).
Ученые накачали аргон в алмазную наковальню с предварительно помещенным туда стеклоуглеродом и подвергли содержимое сжатию до полумиллиона атмосфер с разогревом до 1800 градусов Цельсия. Сначала при сжатии и разогреве аргон входил в пустоты структуры стеклоуглерода и равномерно заполнял его, словно губку. Дальнейшее повышение давления и температуры воздействия перестраивало структуру химических связей в стеклоуглероде, превращая его в гораздо более плотный нанокристаллический алмаз.
Аргон при этом выдавливался из трансформирующейся структуры углерода и собирался в замкнутых порах. При снижении температуры химические связи между атомами углерода теряли подвижность, и аргон оказывался запечатанным внутри алмаза.
Как показала рентгеновская дифракция, измеряющая остаточную степень сжатия кристаллического аргона, внутри пор сохранялось давление до 220 тысяч атмосфер. Некоторые крупинки при этом оказывались всего в нанометре от поверхности. Это позволило изучать их методами, недоступными внутри алмазной наковальни, — электронной микроскопией и фотоэлектронной спектроскопией.
Ученые отмечают, что итоговое давление в порах можно задавать путем изменения пикового давления в алмазной наковальне, при котором проводится синтез, — в данном случае оно составило чуть меньше половины от максимального.
Следует отметить, что подобный процесс происходит и в природе.
Алмазы образуются в земной мантии, на глубине нескольких сотен километров, где давление и температура очень близки к использованным в эксперименте. Если растущий алмаз захватывает окружающий материал, высокое давление внутри него сохраняется даже после путешествия на поверхность. В 2018 году в природных алмазах впервые обнаружили инклюзии, содержащие лед-VII, стабильный лишь выше 22 тысяч атмосфер — ранее предполагалось, что в природе он существует только глубоко в недрах гигантских планет и их спутников.
Где это достижение может оказаться полезным? Эффект Мейснера, заключающийся в выталкивании сверхпроводника магнитным полем и использующийся, например, для магнитной левитации, не требует изготовления сплошного провода: изолированные крупинки сверхпроводника его тоже проявляют. Возможно, мы увидим первые сверхпроводящие «антимагниты» и изделия на их основе уже вскоре после того, как будет открыт комнатный сверхпроводник.